Metabarcoding Data from an Inventory of Freshwater Invertebrates from the Miller Creek Watershed, Kenai Peninsula, Alaska, USA

オカレンス(観察データと標本)
最新バージョン United States Geological Survey により出版 3月 31, 2023 United States Geological Survey
公開日:
2023年3月31日
ライセンス:
CC0 1.0

DwC-A形式のリソース データまたは EML / RTF 形式のリソース メタデータの最新バージョンをダウンロード:

DwC ファイルとしてのデータ ダウンロード 9,101 レコード English で (1 MB) - 更新頻度: not planned
EML ファイルとしてのメタデータ ダウンロード English で (27 KB)
RTF ファイルとしてのメタデータ ダウンロード English で (17 KB)

説明

Because benthic macroinvertebrates and zooplankton are susceptible to the pesticide rotenone, we surveyed freshwater macroinvertebrates in the Miller Creek Watershed, Kenai Peninsula, Alaska ahead of a rotenone treatment in fall 2021 to eradicate a population of invasive northern pike (Esox lucius Linnaeus, 1758). We collected 32 samples in 2021 and another 32 post-treatment invertebrate samples in 2022 at the same places and during the same time of year to enable comparison of pre- and post-treatment freshwater invertebrate communities.

データ レコード

この オカレンス(観察データと標本) リソース内のデータは、1 つまたは複数のデータ テーブルとして生物多様性データを共有するための標準化された形式であるダーウィン コア アーカイブ (DwC-A) として公開されています。 コア データ テーブルには、9,101 レコードが含まれています。

拡張データ テーブルは2 件存在しています。拡張レコードは、コアのレコードについての追加情報を提供するものです。 各拡張データ テーブル内のレコード数を以下に示します。

Occurrence (コア)
9101
Identification 
9140
dnaDerivedData 
9101

この IPT はデータをアーカイブし、データ リポジトリとして機能します。データとリソースのメタデータは、 ダウンロード セクションからダウンロードできます。 バージョン テーブルから公開可能な他のバージョンを閲覧でき、リソースに加えられた変更を知ることができます。

バージョン

次の表は、公にアクセス可能な公開バージョンのリソースのみ表示しています。

引用方法

研究者はこの研究内容を以下のように引用する必要があります。:

Bowser M L, Artaiz S I, Danner J M, Dent K K, Meyer B, Watts D, Wyrick W R (2022): Metabarcoding Data from an Inventory of Freshwater Invertebrates from the Miller Creek Watershed, Kenai Peninsula, Alaska, USA. v1.3. United States Geological Survey. Dataset/Occurrence. https://bison.usgs.gov/ipt/resource?r=knwr_miller_creek_2021&v=1.3

権利

研究者は権利に関する下記ステートメントを尊重する必要があります。:

パブリッシャーとライセンス保持者権利者は United States Geological Survey。 To the extent possible under law, the publisher has waived all rights to these data and has dedicated them to the Public Domain (CC0 1.0). Users may copy, modify, distribute and use the work, including for commercial purposes, without restriction.

GBIF登録

このリソースをはGBIF と登録されており GBIF UUID: 9d7baaac-57db-4852-9993-7f0e7f15635bが割り当てられています。   GBIF-US によって承認されたデータ パブリッシャーとして GBIF に登録されているUnited States Geological Survey が、このリソースをパブリッシュしました。

キーワード

Occurrence

外部データ

リソース データは他の形式で入手可能です。

Miller Creek Watershed aquatic invertebrate inventory, raw metabarcoding data from the 2021 field season https://ecos.fws.gov/ServCat/Reference/Profile/139306 UTF-8 FASTQ

連絡先

Matthew L. Bowser
  • メタデータ提供者
  • 最初のデータ採集者
  • 連絡先
  • Fish and Wildlife Biologist
U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge
  • PO Box 2139
99669 Soldotna
AK
US
Samuel I. Artaiz
  • 最初のデータ採集者
  • Biological Technician
U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge
US
Jake M. Danner
  • 最初のデータ採集者
  • Biological Technician
U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge
US
Kris K. Dent
  • 最初のデータ採集者
  • Biologist
Alaska Department of Fish and Game
Soldotna
Alaska
US
Benjamin Meyer
  • 最初のデータ採集者
  • Environmental Scientist
Kenai Watershed Forum
Soldotna
Alaska
US
Dom Watts
  • 最初のデータ採集者
  • Pilot/Biologist
U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge
Soldotna
Alaska
US
Warren R. Wyrick
  • 最初のデータ採集者
  • Biologist
Alaska Department of Fish and Game
Soldotna
Alaska
US
Anya Bronowski
  • 最初のデータ採集者
  • Biological Technician
U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge
Soldotna
Alaska
US
Jackie Morton
  • 最初のデータ採集者
  • Biological Technician
U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge
Soldotna
Alaska
US
Benyamin Wishnek
  • 最初のデータ採集者
  • South Region Early Detection Rapid Response Project Manager
U.S. Fish and Wildlife Service, Alaska Region
Soldotna
Alaska
US

地理的範囲

The geographic coverage is part of the Miller Creek watershed including North Vogel Lake, Vogel Lake, and Miller Creek.

座標(緯度経度) 南 西 [60.984, -150.515], 北 東 [61.005, -150.41]

生物分類学的範囲

Annelida, Arthropoda, Mollusca

Phylum Annelida, Arthropoda, Mollusca

時間的範囲

開始日 / 終了日 2021-07-21 / 2022-08-29

プロジェクトデータ

Because benthic macroinvertebrates and zooplankton are susceptible to the pesticide rotenone, surveys of freshwater macroinvertebrates were conducted in the Miller Creek Watershed, Kenai Peninsula, Alaska ahead of a planned rotenone treatment in fall 2021. Currently, 32 of 32 planned samples have been collected in 2021. Another 32 post-treatment invertebrate samples are planned in 2022 to enable comparison of pre- and post-treatment freshwater invertebrate communities.

タイトル Inventory of Freshwater Invertebrates from the Miller Creek Watershed, Kenai Peninsula, Alaska, USA
識別子 https://ecos.fws.gov/ServCat/Reference/Profile/139305
Study Area Description The study area included North Vogel Lake, Vogel Lake, and Miller Creek in the Miller Creek watershed, Kenai Peninsula, Alaska, USA.
研究の意図、目的、背景など(デザイン) At each of two visits per year we planned to collect 3 D-net samples, 3 Ekman dredge samples, and 2 Wisconsin net samples in Vogel Lake; 2 D-net samples, 2 Ekman dredge samples, and 1 Wisconsin net sample in North Vogel Lake; and 3 D-net samples in Miller Creek, a total of 16 invertebrate samples per visit, 32 samples per year, and 64 samples over the two year project. At North Vogel Lake, Vogel Lake, and upper Miller Creek we sampled twice in 2021: first on July 20--23 and second on August 28. We sampled at 15 sites using three methods. We failed to make it out to the mouth of Miller Creek in July and August, collecting samples there only on September 13, 2021.

プロジェクトに携わる要員:

Matthew Bowser
Samuel Artaiz
  • 論文著者
Jake Danner
  • 論文著者
Kris Dent
  • 論文著者
Robert Massengill
Benjamin Meyer
  • 論文著者
Dom Watts
  • 論文著者
Warren Wyrick
  • 論文著者

収集方法

Field methods generally followed the methods of Massengill (2014, 2017). We took vertical plankton tows in the deepest parts of the lakes using an Aquatic Research Instruments Wisconsin net. We sampled littoral areas using with D-nets. We obtained benthic samples using either an AMS Incorporated model 445.11 Ekman dredge or an AMS Incorporated model 445.60 stainless steel dredge. Most benthic samples were sorted using a series of sieves.

Study Extent The study extent included 3 D-net samples, 3 Ekman dredge samples, and 2 Wisconsin net samples in Vogel Lake; 2 D-net samples, 2 Ekman dredge samples, and 1 Wisconsin net sample in North Vogel Lake; and 3 D-net samples in Miller Creek, a total of 16 invertebrate samples per visit, sampled twice per year for a total of 32 samples per year.

Method step description:

  1. Metabarcoding samples were stored in a -23 °C freezer exept when samples were being processed. Invertebrates were separated from debris by hand under a dissecting microscope. Care was taken to reduce possible crosscontamination of DNA among samples. Samples were shipped out on ice on September 29, 2021, arriving the next day at MR DNA (Shallowater, Texas, http://www. mrdnalab.com). We chose to use the mlCOIintF/jgHCO2198 primer set of Leray et al. (2013) for PCR, targeting a 313 bp region of the COI DNA barcoding region. The mlCOIintF/jgHCO2198 primer pair was used with barcode on the forward primer in a 30–35 PCR using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) under the following conditions: 94 °C for 3 minutes, followed by 30– 35 cycles of 94 °C for 30 s, 53 °C for 40 seconds and 72 °C for 1 minute, after which a final elongation step at 72 °C for 5 minutes was performed. After amplification, PCR products were checked in 2% agarose gel to determine the success of amplification and the relative intensity of bands. Multiple samples were pooled together in equal proportions based on their molecular weight and DNA concentrations. Pooled samples were purified using calibrated Ampure XP beads. The pooled and purified PCR product was used to prepare an illumina DNA library. Sequencing was performed at MR DNA on a MiSeq following the manufacturer’s guidelines. We processed the raw sequence data on the USGS Yeti supercomputer (USGS Advanced Research Computing, 2021) using R, version 4.1.1 for manipulating data and Je, version 2.0.RC (Girardot et al., 2016) for demultiplexing. The raw data included reads in alternating directions with the sample barcodes only on one read. Accordingly, we exectued the je demultiplex command, accepting the defaults that only require one of the two reads to contain a sample barcode. Raw read data were processed using MetaWorks, version 1.9.5 (Porter and Hajibabaei, 2020), running the default analysis options for metazoan COI DNA barcode sequences. Sequences were identified using the RDP classifier, version 2.13 (Wang et al., 2007) and the CO1 Classifier, version 4.0.1 reference library (Porter, 2017; Porter and Hajibabaei, 2018). Finally, we also compared the sequences to libraries we had obtained in previous metabarcoding projects on the Kenai Peninsula.

書誌情報の引用

  1. Massengill R (2014) Control Efforts for Invasive Northern Pike on the Kenai Peninsula, 2009. Special Publication 14-11. URL http://www.adfg.alaska.gov/FedAidPDFs/SP14-11.pdf http://www.adfg.alaska.gov/FedAidPDFs/SP14-11.pdf
  2. Massengill R (2017) Stormy Lake Restoration: Invasive Northern Pike Eradication, 2012. Special Publication 17-18, Alaska Department of Fish and Game, Divisions of Sport Fish and Commercial Fisheries. http://www.adfg.alaska.gov/FedAidPDFs/SP17-18.pdf http://www.adfg.alaska.gov/FedAidPDFs/SP17-18.pdf
  3. Leray M, Yang Y J, Meyer C P, Mills S C, Agudelo N, Ranwez V, Boehm J T, Machida R J (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology https://doi.org/10.1186/1742-9994-10-34 https://doi.org/10.1186/1742-9994-10-34
  4. USGS Advanced Research Computing (2021) USGS Yeti Supercomputer. U.S. Geological Survey. https://doi.org/10.5066/F7D798MJ https://doi.org/10.5066/F7D798MJ
  5. Girardot C, Scholtalbers J, Sauer S, Su S-Y, Furlong E E (2016) Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinformatics 17:419. https://doi.org/10.1186/s12859-016-1284-2 https://doi.org/10.1186/s12859-016-1284-2
  6. Porter T M, Hajibabaei M (2020). METAWORKS: A flexible, scalable bioinformatic pipeline for multi-marker biodiversity assessments. BioRxiv, 2020.07.14.202960. https://doi.org/10.1101/2020.07.14.202960 https://doi.org/10.1101/2020.07.14.202960
  7. Wang Q,Garrity G M, Tiedje J M, Cole J R (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261. https://doi.org/10.1128/AEM.00062-07 https://doi.org/10.1128/AEM.00062-07
  8. Porter T M (2017) Eukaryote CO1 Reference Set For The RDP Classifier. https://doi.org/10.5281/zenodo.4741447 https://doi.org/10.5281/zenodo.4741447
  9. Porter T M, Hajibabaei M (2018) Automated high throughput animal CO1 metabarcode classification. Scientific Reports 8:4226. https://doi.org/10.1038/s41598-018-22505-4 https://doi.org/10.1038/s41598-018-22505-4

追加のメタデータ

代替識別子 9d7baaac-57db-4852-9993-7f0e7f15635b
https://doi.org/10.15468/49v6yh
https://ipt.gbif.us/resource?r=knwr_miller_creek_2021