說明
Because benthic macroinvertebrates and zooplankton are susceptible to the pesticide rotenone, we surveyed freshwater macroinvertebrates in the Miller Creek Watershed, Kenai Peninsula, Alaska ahead of a rotenone treatment in fall 2021 to eradicate a population of invasive northern pike (Esox lucius Linnaeus, 1758). We collected 32 samples in 2021 and another 32 post-treatment invertebrate samples in 2022 at the same places and during the same time of year to enable comparison of pre- and post-treatment freshwater invertebrate communities.
資料紀錄
此資源出現紀錄的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 9,101 筆紀錄。
亦存在 2 筆延伸集的資料表。延伸集中的紀錄補充核心集中紀錄的額外資訊。 每個延伸集資料表中資料筆數顯示如下。
此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。
版本
以下的表格只顯示可公開存取資源的已發布版本。
如何引用
研究者應依照以下指示引用此資源。:
Bowser M L, Artaiz S I, Danner J M, Dent K K, Meyer B, Watts D, Wyrick W R (2022): Metabarcoding Data from an Inventory of Freshwater Invertebrates from the Miller Creek Watershed, Kenai Peninsula, Alaska, USA. v1.3. United States Geological Survey. Dataset/Occurrence. https://bison.usgs.gov/ipt/resource?r=knwr_miller_creek_2021&v=1.3
權利
研究者應尊重以下權利聲明。:
此資料的發布者及權利單位為 United States Geological Survey。 To the extent possible under law, the publisher has waived all rights to these data and has dedicated them to the Public Domain (CC0 1.0). Users may copy, modify, distribute and use the work, including for commercial purposes, without restriction.
GBIF 註冊
此資源已向GBIF註冊,並指定以下之GBIF UUID: 9d7baaac-57db-4852-9993-7f0e7f15635b。 United States Geological Survey 發佈此資源,並經由GBIF-US同意向GBIF註冊成為資料發佈者。
關鍵字
Occurrence
外部資料
此資源尚有其他格式可用
Miller Creek Watershed aquatic invertebrate inventory, raw metabarcoding data from the 2021 field season | https://ecos.fws.gov/ServCat/Reference/Profile/139306 UTF-8 FASTQ |
---|
聯絡資訊
- 元數據提供者 ●
- 出處 ●
- 連絡人
- Fish and Wildlife Biologist
- PO Box 2139
- 出處
- Biological Technician
- 出處
- Biological Technician
- 出處
- Biologist
- 出處
- Environmental Scientist
- 出處
- Pilot/Biologist
- 出處
- Biologist
- 出處
- Biological Technician
- 出處
- Biological Technician
- 出處
- South Region Early Detection Rapid Response Project Manager
地理涵蓋範圍
The geographic coverage is part of the Miller Creek watershed including North Vogel Lake, Vogel Lake, and Miller Creek.
界定座標範圍 | 緯度南界 經度西界 [60.984, -150.515], 緯度北界 經度東界 [61.005, -150.41] |
---|
分類群涵蓋範圍
Annelida, Arthropoda, Mollusca
Phylum | Annelida, Arthropoda, Mollusca |
---|
時間涵蓋範圍
起始日期 / 結束日期 | 2021-07-21 / 2022-08-29 |
---|
計畫資料
Because benthic macroinvertebrates and zooplankton are susceptible to the pesticide rotenone, surveys of freshwater macroinvertebrates were conducted in the Miller Creek Watershed, Kenai Peninsula, Alaska ahead of a planned rotenone treatment in fall 2021. Currently, 32 of 32 planned samples have been collected in 2021. Another 32 post-treatment invertebrate samples are planned in 2022 to enable comparison of pre- and post-treatment freshwater invertebrate communities.
計畫名稱 | Inventory of Freshwater Invertebrates from the Miller Creek Watershed, Kenai Peninsula, Alaska, USA |
---|---|
辨識碼 | https://ecos.fws.gov/ServCat/Reference/Profile/139305 |
研究區域描述 | The study area included North Vogel Lake, Vogel Lake, and Miller Creek in the Miller Creek watershed, Kenai Peninsula, Alaska, USA. |
研究設計描述 | At each of two visits per year we planned to collect 3 D-net samples, 3 Ekman dredge samples, and 2 Wisconsin net samples in Vogel Lake; 2 D-net samples, 2 Ekman dredge samples, and 1 Wisconsin net sample in North Vogel Lake; and 3 D-net samples in Miller Creek, a total of 16 invertebrate samples per visit, 32 samples per year, and 64 samples over the two year project. At North Vogel Lake, Vogel Lake, and upper Miller Creek we sampled twice in 2021: first on July 20--23 and second on August 28. We sampled at 15 sites using three methods. We failed to make it out to the mouth of Miller Creek in July and August, collecting samples there only on September 13, 2021. |
參與計畫的人員:
- 作者
- 作者
- 作者
- 作者
- 作者
- 作者
取樣方法
Field methods generally followed the methods of Massengill (2014, 2017). We took vertical plankton tows in the deepest parts of the lakes using an Aquatic Research Instruments Wisconsin net. We sampled littoral areas using with D-nets. We obtained benthic samples using either an AMS Incorporated model 445.11 Ekman dredge or an AMS Incorporated model 445.60 stainless steel dredge. Most benthic samples were sorted using a series of sieves.
研究範圍 | The study extent included 3 D-net samples, 3 Ekman dredge samples, and 2 Wisconsin net samples in Vogel Lake; 2 D-net samples, 2 Ekman dredge samples, and 1 Wisconsin net sample in North Vogel Lake; and 3 D-net samples in Miller Creek, a total of 16 invertebrate samples per visit, sampled twice per year for a total of 32 samples per year. |
---|
方法步驟描述:
- Metabarcoding samples were stored in a -23 °C freezer exept when samples were being processed. Invertebrates were separated from debris by hand under a dissecting microscope. Care was taken to reduce possible crosscontamination of DNA among samples. Samples were shipped out on ice on September 29, 2021, arriving the next day at MR DNA (Shallowater, Texas, http://www. mrdnalab.com). We chose to use the mlCOIintF/jgHCO2198 primer set of Leray et al. (2013) for PCR, targeting a 313 bp region of the COI DNA barcoding region. The mlCOIintF/jgHCO2198 primer pair was used with barcode on the forward primer in a 30–35 PCR using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) under the following conditions: 94 °C for 3 minutes, followed by 30– 35 cycles of 94 °C for 30 s, 53 °C for 40 seconds and 72 °C for 1 minute, after which a final elongation step at 72 °C for 5 minutes was performed. After amplification, PCR products were checked in 2% agarose gel to determine the success of amplification and the relative intensity of bands. Multiple samples were pooled together in equal proportions based on their molecular weight and DNA concentrations. Pooled samples were purified using calibrated Ampure XP beads. The pooled and purified PCR product was used to prepare an illumina DNA library. Sequencing was performed at MR DNA on a MiSeq following the manufacturer’s guidelines. We processed the raw sequence data on the USGS Yeti supercomputer (USGS Advanced Research Computing, 2021) using R, version 4.1.1 for manipulating data and Je, version 2.0.RC (Girardot et al., 2016) for demultiplexing. The raw data included reads in alternating directions with the sample barcodes only on one read. Accordingly, we exectued the je demultiplex command, accepting the defaults that only require one of the two reads to contain a sample barcode. Raw read data were processed using MetaWorks, version 1.9.5 (Porter and Hajibabaei, 2020), running the default analysis options for metazoan COI DNA barcode sequences. Sequences were identified using the RDP classifier, version 2.13 (Wang et al., 2007) and the CO1 Classifier, version 4.0.1 reference library (Porter, 2017; Porter and Hajibabaei, 2018). Finally, we also compared the sequences to libraries we had obtained in previous metabarcoding projects on the Kenai Peninsula.
引用文獻
- Massengill R (2014) Control Efforts for Invasive Northern Pike on the Kenai Peninsula, 2009. Special Publication 14-11. URL http://www.adfg.alaska.gov/FedAidPDFs/SP14-11.pdf http://www.adfg.alaska.gov/FedAidPDFs/SP14-11.pdf
- Massengill R (2017) Stormy Lake Restoration: Invasive Northern Pike Eradication, 2012. Special Publication 17-18, Alaska Department of Fish and Game, Divisions of Sport Fish and Commercial Fisheries. http://www.adfg.alaska.gov/FedAidPDFs/SP17-18.pdf http://www.adfg.alaska.gov/FedAidPDFs/SP17-18.pdf
- Leray M, Yang Y J, Meyer C P, Mills S C, Agudelo N, Ranwez V, Boehm J T, Machida R J (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology https://doi.org/10.1186/1742-9994-10-34 https://doi.org/10.1186/1742-9994-10-34
- USGS Advanced Research Computing (2021) USGS Yeti Supercomputer. U.S. Geological Survey. https://doi.org/10.5066/F7D798MJ https://doi.org/10.5066/F7D798MJ
- Girardot C, Scholtalbers J, Sauer S, Su S-Y, Furlong E E (2016) Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinformatics 17:419. https://doi.org/10.1186/s12859-016-1284-2 https://doi.org/10.1186/s12859-016-1284-2
- Porter T M, Hajibabaei M (2020). METAWORKS: A flexible, scalable bioinformatic pipeline for multi-marker biodiversity assessments. BioRxiv, 2020.07.14.202960. https://doi.org/10.1101/2020.07.14.202960 https://doi.org/10.1101/2020.07.14.202960
- Wang Q,Garrity G M, Tiedje J M, Cole J R (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261. https://doi.org/10.1128/AEM.00062-07 https://doi.org/10.1128/AEM.00062-07
- Porter T M (2017) Eukaryote CO1 Reference Set For The RDP Classifier. https://doi.org/10.5281/zenodo.4741447 https://doi.org/10.5281/zenodo.4741447
- Porter T M, Hajibabaei M (2018) Automated high throughput animal CO1 metabarcode classification. Scientific Reports 8:4226. https://doi.org/10.1038/s41598-018-22505-4 https://doi.org/10.1038/s41598-018-22505-4
額外的詮釋資料
替代的識別碼 | 9d7baaac-57db-4852-9993-7f0e7f15635b |
---|---|
https://doi.org/10.15468/49v6yh | |
https://ipt.gbif.us/resource?r=knwr_miller_creek_2021 |